Calculus II - Computer Science 2
Advanced
Technical
Computer Science
-
Calculus part 264Lessons ·
-
Calculus II - 6.1.1 General and Particular Solutions to Differential Equations
-
Calculus II - 6.1.2 Slope Fields
-
Calculus II - 6.2.1 Use Separation of Variables to Solve a Simple Differential Equation
-
Calculus II - 6.2.2 Models of Exponential Growth and Decay
-
Calculus II - 6.3.1 Using Separation of Variables to Find General and Particular Solutions
-
Calculus II - 6.3.2 The Logistic Differential Equation
-
Calculus II - 6.4.1 First Order Linear Differential Equations
-
Calculus II - 7.1.1 Finding The Area Under a Curve
-
Calculus II - 7.1.2 Finding the Area Between Two Curves
-
Calculus II - 7.1.3 Applications Involving the Area Between Two Curves
-
Calculus II - 7.2.1 Finding Volume Using the Disk Method
-
Calculus II - 7.2.2 Finding Volume Using the Washer Method
-
Calculus II - 7.2.3 Finding the Volume of a Solid with Known Cross Sections
-
Calculus II - 7.3.1 Finding Volume Using the Shell Method
-
Calculus II - 7.3.2 Disk Method vs. Shell Method
-
Calculus II - 7.4.1 Finding Arc Length
-
Calculus II - 7.4.2 Surfaces of Revolution
-
Calculus II - 7.5.1 Work, Work, Work
-
Calculus II - 7.6.1 Center of Mass in a One- or Two-Dimensional System
-
Calculus II - 7.6.2 Center of Mass of a Planar Lamina
-
Calculus II - 7.7.1 Fluid Pressure and Fluid Force
-
Calculus II - 8.1.1 Fitting Integrands to Basic Integration Rules
-
Calculus II - 8.2.1 Integration by Parts
-
Calculus II - 8.3.1 Integrals Involving Powers of Sine and Cosine
-
Calculus II - 8.3.2 Integrals Involving Powers of Secant and Tangent
-
Calculus II - 8.4.1 Trigonometric Substitution
-
Calculus II - 8.5.1 Using Partial Fractions with Linear Factors to Integrate
-
Calculus II - 8.5.2 Using Partial Fractions with Quadratic Factors to Integrate
-
Calculus II - 8.6.1 Using the Trapezoidal Rule to Approximate Integrals
-
Calculus II - 8.6.2 Using Simpson's Rule to Approximate Integrals
-
Calculus II - 8.8.1 Improper Integrals with Infinite Limits of Integration
-
Calculus II - 8.8.2 Improper Integrals with Infinite Discontinuities
-
Calculus II - 9.1.1 The Limit of a Sequence
-
Calculus II - 9.1.2 Pattern Recognition for Sequences
-
Calculus II - 9.1.3 Monotonic and Bounded Sequences
-
Calculus II - 9.2.1 Infinite Series
-
Calculus II - 9.2.2 The Geometric Series
-
Calculus II - 9.2.3 The nth Term Test for Divergence
-
Calculus II - 9.3.1 The Integral Test
-
Calculus II - 9.3.2 The p-Series
-
Calculus II - 9.4.1 The Direct Comparison Test
-
Calculus II - 9.4.2 The Limit Comparison Test
-
Calculus II - 9.5.1 The Alternating Series Test
-
Calculus II - 9.5.2 The Alternating Series Remainder
-
Calculus II - 9.5.3 Absolute and Conditional Convergence
-
Calculus II - 9.6.1 The Ratio Test
-
Calculus II - 9.6.2 The Root Test
-
Calculus II - 9.8.1 The Power Series L=0 or L=Inf
-
Calculus II - 9.8.2 The Power Series - Finding R and the Interval of Convergence
-
Calculus II - 9.9.1 Represent Functions with the Geometric Power Series
-
Calculus II - 9.9.2 Operations with The Geometric Power Series
-
Calculus II - 9.10.1 The Taylor and Maclaurin Series
-
Calculus II - 9.10.2 The Binomial Series
-
Calculus II - 9.10.3 Use The Power Series for Elementary Functions
-
Calculus II - 10.1.1 An Introduction to Conic Sections
-
Calculus II - 10.1.2 Parabolas
-
Calculus II - 10.1.3 Ellipses
-
Calculus II - 10.1.4 Hyperbolas
-
Calculus II - 10.2.1 Plane Curves and Parametric Equations
-
Calculus II - 10.2.2 Finding Parametric Equations
-
Calculus II - 10.3.1 Slope, Tangent Lines, and Concavity of Parametric Equations
-
Calculus II - 10.4.1 Polar Coordinates and Coordinate Conversion
-
Calculus II - 10.4.2 Polar Graphs
-
Calculus II - 10.4.3 Slope and Tangent Lines of Polar Equations
-
-
Discrete mathematics part 226Lessons ·
-
Discrete Math - 2.6.1 Matrices and Matrix Operations
-
Discrete Math - 2.6.2 Matrix Operations on your TI-84
-
Discrete Math - 2.6.3 Zero-One Matrices
-
Discrete Math - 3.1.1 Introduction to Algorithms and Pseudo Code
-
Discrete Math - 3.1.2 Searching Algorithms
-
Discrete Math - 3.1.3 Sorting Algorithms
-
Discrete Math - 3.1.4 Optimization Algorithms
-
Discrete Math - 4.1.1 Divisibility
-
Discrete Math - 4.1.2 Modular Arithmetic
-
Discrete Math - 4.2.1 Decimal Expansions from Binary, Octal and Hexadecimal
-
Discrete Math - 4.2.2 Binary, Octal and Hexadecimal Expansions From Decimal
-
Discrete Math - 4.2.3 Conversions Between Binary, Octal and Hexadecimal Expansions
-
Discrete Math - 4.2.4 Algorithms for Integer Operations
-
Discrete Math - 4.3.1 Prime Numbers and Their Properties
-
Discrete Math - 4.3.2 Greatest Common Divisors and Least Common Multiples
-
Discrete Math - 4.3.3 The Euclidean Algorithm
-
Discrete Math - 4.3.4 Greatest Common Divisors as Linear Combinations
-
Discrete Math - 4.4.1 Solving Linear Congruences Using the Inverse
-
Discrete Math - 5.1.1 Proof Using Mathematical Induction - Summation Formulae
-
Discrete Math - 5.1.2 Proof Using Mathematical Induction - Inequalities
-
Discrete Math - 5.1.3 Proof Using Mathematical Induction - Divisibility
-
Discrete Math - 5.2.1 The Well-Ordering Principle and Strong Induction
-
Discrete Math - 5.3.1 Revisiting Recursive Definitions
-
Discrete Math - 5.3.2 Structural Induction
-
Discrete Math - 5.4.1 Recursive Algorithms
-
Discrete Math - 6.1.1 Counting Rules
-
-
Intoduction to c++ and object-oriented programming13Lessons ·
-
Install C++ & NetBeans
-
Setup Visual Studio Code Mac
-
Setup Visual Studio Code Windows
-
C++ Tutorial
-
C++ Tutorial 2 : Conditionals, Arrays, Vectors, Strings, Loops
-
C++ Tutorial 3 : Pointers & Functions
-
C++ Tutorial 4 : Exception Handling & Looping
-
C++ Tutorial 5 : Strings & Math
-
C++ Tutorial 6 : Solving Problems
-
C++ Tutorial 7 : Solving Problems
-
C++ Tutorial 8 : Recursion Algorithms & Overloaded Functions
-
C++ Tutorial 9 : Lambda Expressions
-
C++ Tutorial 10 : Object Oriented Programming
-
-
Computer system architecture40Lessons ·
-
Lecture 1. Introduction and Basics - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 2. Fundamental Concepts and ISA - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 3. ISA Tradeoffs - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 4. ISA Tradeoffs & MIPS ISA - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Review Session 1 - CMU - Computer Architecture 2015 - Onur Mutlu
-
Lecture 5. Intro to Microarchitecture - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 6. Microarchitecture II - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 7. Pipelining - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 8. Pipelining II: Data and Control Dependence Handling - CMU - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 9. Branch Prediction I - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 10. Branch Prediction II - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Review Session 2 - CMU - Computer Architecture 2015 - Onur Mutlu
-
Lecture 11. Precise Exceptions, State Maintenance/Recovery - CMU - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 12. Out of Order Execution - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 13. Out of Order Execution II and Data Flow - CMU - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 14. SIMD (Vector Processors) - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 15. GPUs, VLIW, Execution Models - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 16. Static Instruction Scheduling - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 17. Memory Hierarchy and Caches - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 18. Caches - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 19. High Performance Caches - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 20. Virtual Memory - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Recitation 3 - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Midterm 1 Review - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 21: Main Memory and the DRAM System - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 22: Memory Controllers - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 23: Memory Management - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 24: Simulation & Memory Latency Tolerance - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 25: Prefetching - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 26. More Prefetching and Emerging Memory Technologies - CMU - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 27. Multiprocessors - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 28. Memory Consistency and Cache Coherence - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 29. Cache Coherence - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 30. In-memory Processing - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 31. Predictable Performance - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 32. Heterogeneous Systems - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Midterm 2 Review - Carnegie Mellon - Comp. Arch. 2015 - Onur Mutlu
-
Lecture 33. Interconnection Networks - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Final Review Session - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
Lecture 1. Introduction and Basics - Carnegie Mellon - Computer Architecture 2015 - Onur Mutlu
-
-
Introduction to web design (html + css)2Lessons ·
-
HTML Crash Course For Absolute Beginners
-
CSS Crash Course For Absolute Beginners
-